Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Main subject
Language
Document Type
Year range
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.12.06.22283000

ABSTRACT

The Omicron era of the COVID-19 pandemic commenced at the beginning of 2022 and whilst it started with primarily BA.1, it was latter dominated by BA.2 and related sub-lineages. Over the course of 2022, we monitored the potency and breadth of antibody neutralization responses to many emerging variants at two levels: (i) we tracked over 400,000 U.S. plasma donors over time through various vaccine booster roll outs and Omicron waves using antibody pools. (ii) we mapped the antibody response at the individual level using blood from strigently curated vaccine and convalescent cohorts. In pooled antibody samples, we observed the maturation of neutralization breadth to Omicron variants over time through continuing vaccine and infection waves. Importantly, in many cases we observed increased antibody breadth to variants that were yet to be in circulation. Resolution of viral neutralisation at the cohort level supported equivalent coverage across prior and emerging variants with emerging isolates BQ.1.1, XBB.1 and BR.2.1 the most evasive. Further, these emerging variants were resistant to Evusheld, whilst neutralization resistance to Sotrovimab was restricted to BQ.1.1 and further supported by lack of Spike glycoprotein binding to this variant. An outgrowth advantage through better utilization of TMPRSS2 was observed across BQ lineages and not those derived from BA.2.75. We conclude at this current point in time that variants derived from BQ lineages can evade antibodies at levels equivalent to their most evasive BA.2.75 counterparts but sustain an entry phenotype that would promote an additional outgrowth advantage.


Subject(s)
COVID-19
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.07.20245696

ABSTRACT

BackgroundSerological testing for SARS-CoV-2 specific antibodies provides important research and diagnostic information relating to COVID-19 prevalence, incidence, and host immune response. A greater understanding of the relationship between functionally neutralising antibodies detected using microneutralisation assays and binding antibodies detected using scalable enzyme immunoassays (EIA) is needed in order to address protective immunity post-infection or vaccination, and assess EIA suitability as a surrogate test for screening of convalescent plasma donors. We assessed whether neutralising antibody titres correlated with signal cut-off ratios in five commercially available EIAs, and one in-house assay based on expressed spike protein targets. MethodsSera from individuals recovered from patients or convalescent plasma donors who reported laboratory-confirmed SARS-CoV-2 infection (n=200), and negative control sera collected prior to the COVID-19 pandemic (n=100) were assessed in parallel. Performance was assessed by calculating EIA sensitivity and specificity with reference to microneutralisation. ResultsNeutralising antibodies were detected in 166 (83%) samples. Compared with this, the most sensitive EIAs were the Cobas Elecsys Anti-SARS-CoV-2 (98%) and Vitros Immunodiagnostic Anti-SARS-CoV-2 (100%), which detect total antibody targeting the N and S1 antigens, respectively. The assay with the best quantitative relationship with microneutralisation was the Euroimmun IgG. ConclusionsThese results suggest the marker used (total Ab vs IgG vs IgA), and the target antigen are important determinants of assay performance. The strong correlation between microneutralisation and some commercially available assays demonstrate their potential for clinical and research use in assessing protection following infection or vaccination, and use as a surrogate test to assess donor suitability for convalescent plasma donation.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL